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Abstract— In the automotive field, the use of
ECU (Electronic Control Unit) to control several
functions (such as engine injection or ABS) in-
creases. In order to diagnose such systems, diag-
nosis trees are built. These trees allow the garage
mechanics to find the faulty component(s) by per-
forming a set of tests (measurements) which has
the lowest global cost as possible. Nowadays these
diagnosis trees are hand made by human experts.
The difficulty of doing this task increases due to
the complexity of electronic circuits and mecatronic
systems. Consequently, errors are not unusual and
it becomes urgent to reduce the human interven-
tion in the diagnosis tree generation process at the
lowest. This paper presents the software applica-
tion AGENDA which computes an optimal diagno-
sis tree for electronic circuits. In order to find a
solution to the test sequencing problem, the used
diagnosis method is based on a prediction algorithm
and on the execution of an AO* algorithm which al-

lows us to obtain an optimal diagnosis tree.

I. INTRODUCTION

In the automotive field, the use of electronic sys-
tems to control several functions has been widely de-
veloped during these last years. These functions cover
more and more different automotive areas such as en-
gine control (fuel injection or ignition), road driving
(ABS or suspensions), security (air-bags or seat-belt),
or comfort (air conditioning or heating system).

These electronic systems are roughly composed of
voltage supply sensors (potentiometer or temperature
sensor) and actuators (electro-valve) linked to Elec-
tronic Control Units (ECU) by a wire harness.

The main task of the ECU is to elaborate and to send
control signals to its actuators taking into account the
signals received by its sensors. Moreover, the ECUs
are equipped with an auto-diagnosis function which
reliably detects which of the electronic circuits that are
connected to this ECU are failing. However, the ECU
is not able to localize precisely the faulty components
even if it is able to detect the failed electronic circuit.

In order to diagnose such electronic circuits, diag-
nosis trees are built. These trees allow the garage me-
chanic to find the faulty component(s) by performing a
sequence of tests (measurements) which has the lowest
global cost as possible. Nowadays these diagnosis trees
are hand made by human experts. This task requires
more and more time and becomes more and more diffi-

cult as the complexity of electronic circuits and meca-
tronic systems increases. Consequently, errors are not
unusual in the resulting diagnosis trees. As a matter
of fact, it becomes urgent to reduce the human inter-
vention in the diagnosis tree generation process at the
lowest,.

In order to automatically build these diagnosis trees
from the design data supplied by the car manufacturer
the software diagnosis application AGENDA (Auto-
matic GENeration of DiAgnosis trees) has been devel-
oped.

AGENDA can be viewed as the non-interactive step
(i.e. the failed system is not yet on the workshop test
bench, however, knowledge about the possible faulty
behaviors of this system is available) of an off-line di-
agnosis application (see [1]). The information required
for the interactive step (i.e. the diagnosis session when
the failed system is on the workshop test bench) is pre-
compiled in the diagnosis tree delivered by AGENDA.

The aim of this paper is to briefly present the diag-
nosis method AGENDA, the open issues and the future
work.

The first section describes the prediction process
that provides the set of faults to discriminate, the set of
tests that can be performed on the system and the cor-
responding “cross-table” from the design data supplied
by the car manufacturer. Each cell of the “cross-table”
corresponds to one of the possible couples (fault/test)
and contains the possible outcomes of the test in oc-
currence of the fault.

The second section characterizes the specific test se-
quencing problem that has to be solved in order to ob-
tain an optimal diagnosis tree from the created fault
set, test set and corresponding “cross-table” (see [2]).

The third section discusses the performances of the
AGENDA application and several interesting direc-
tions for future investigation are outlined in the fourth
section.

II. PREDICTION PROCESS

The first step is to build a behavioral model of the
system to be diagnosed is created from the design data
supplied by the car manufacturer according to a clas-
sical component-oriented approach (see [3]).

Then, the set of faults that are considered for dis-
crimination, and the set of tests that are considered
available on the system are anticipated from this be-
havioral model.



At last, the possible outcomes of a given test when
the system is in a given faulty state are computed ac-
cording to a prediction algorithm that uses symbolic
computation followed by multi-variable optimization
on intervals.

A. Behavioral model

A behavioral model is characterized by a set Z of
nz mode variables {z1,...,zn, }, a set X of nx state
variables {z1,...,2,, } and a set ¥ of ny parameters
{yla L) yny}

nys different modes Zj, with k € {1,...,ny} are de-
fined as vectors of ny values assigned to each of the
mode variables z; with ¢ € {1,...,nz}. In the same way,
ny, parameter initializations Y3 with k € {1,...,n.} are
defined as vectors of ny values assigned to each of the
parameters y; with i € {1,...,ny}.

For any k € {1,....,nnm}, Z is associated with one
couple o, defined by one behavior b;(X,Y’) and one
parameter assignment vector Y}, as shown in equation
1. The behavior bg(X,Y) is expressed as a system of
equations involving state variables of the set X, pa-
rameters of the set Y and mode variables of the set
Z.

Zy = o = (bk(Xay)ayk) (1)

Consequently, a behavioral model is composed of the
identification of the state variable set X, the parameter
set Y and the mode variable set Z and the explicit
association between any possible mode defined by Zj
and its corresponding couple (bg(X,Y),Y;) with &k €
{1, ceey TLM}

Moreover, the set Z of mode variables may be di-
vided into two subsets Zg and Zg such that ZgUZp =
Z and Zg N Zp = ). Zg represents the set of config-
uration mode variables which denote discrete state of
an elementary entity (ON / OFF for a switch, for in-
stance). Zp denotes the set of faulty mode variables
which denote the possible faulty modes, including the
fault-free one, of an elementary entity.

A component mode Zj, is said to be faulty if at least
one of the mode variables in Zp is assigned to a faulty
mode ; it is fault-free otherwise.

For any set of interconnected components, a struc-
tural model expresses the connections between these
components as a system of equalities which equals two
distinct state variables belonging to two distinct com-
ponents (see [4]).

The structural model defines distinct sets of identi-
cal state variables belonging to different components.
Each of these distinct component state variable sets
defines a different system state variable.

Let ¥ be the system to be diagnosed defined as a set
of ny individual components v; with ¢ € {1,...,ny}.
The behavioral model of the system ¥, called BMy,
is built according to a component oriented approach.
As shown in equation 2, this model is composed of
both the behavioral models BMy, corresponding to the
components v; with i € {1,...,ny} and the structural

model of the system ¥, called SMy, which describes
the way these components are interconnected.

BMy :SM\pUBM¢1 U...UBM,J,H‘I’ (2)

B. Fault and test sets anticipation

Let ¥ be the system to be diagnosed defined as
the set of its ny individual components v; with i €
{1, sy ’n\p}

This subsection describes how the set F' of the faults,
the set R of the corresponding repairs and the set S
of the tests that can be performed on the system are
obtained from the behavioral model.

1) Fault set: For each component 1;, let ®' be the
set of the n% possible faulty modes. Let also ®% ,,
and &%, 5 be the set of the n’ , 5 fault-free modes and
the set of the ni g ‘faulty modes, respectively, such that
P pUPY s =B and DL 5N DY = 0.

A faulty mode of the system W, also called system
fault, is defined as a myg dimension vector which as-
sociates to each component ¢); one of its n% possi-
ble faulty modes. Consequently, the set F' of faults
which may occur in the system ¥ is composed of
npg = [[}¥, n} elements, called fj, with k € {1, ...,np}.

2) Test set: Let X be the set of the nx system vari-
able state defined by the structural model of the system
v,

For each component v;, let U? be the set of the n%
possible configuration modes.

A configuration of the system ¥ is defined as a nyg
dimension vector which associates to each component
1; one of its ni, possible configuration modes. Con-
sequently, the set E of possible configurations of the
system ¥ is composed of ng = [[1¥; ni; elements.

A test is defined as a pair composed of a measure-
ment description based on a subset of the system state
variable set X and a subset of the possible system con-
figuration set E on which all these configurations are
equivalent (i.e. give the same outcome).

C. Prediction algorithm

This work assumes that the system to be diagnosed
is an electronic circuit in the form of a resistance net
supplied by one voltage source. For this system, let F'
be the set of the nr considered faults and S the set of
the ng considered tests.

For any test in S and any fault in F', the aim of the
prediction process is to provide the symbolic expression
of the outcome of the test in the occurrence of the fault.

1) Symbolic matriz expression of the system model:
As shown in figure 1, the symbolic matrix expression of
the system model is in the form A x X = B where the
square matrix A is decomposed into 9 blocks, called
Ai7j with ¢ € {1, ,3} and ] € {1, ,3}

The blocks A172, A173, A371 and A372 are null and
Aq 1 is an identity (2 x 2) matrix.

The vector X is decomposed into 3 sub-vectors,
called X; with ¢ € {1,...,3}. X is a 2 components vec-
tor such that the first component corresponds to the



A | Arp | Ars X, B,
Arqg | Asp | Ass | x| Xo | =| B
Azq | Azp | Az X3 Bs

Fig. 1. Symbolic matrix expression model

ground of the system and the second one to the sup-
ply pin. X, corresponds to the other system potential
points. X3 corresponds to the different intensities of
the system.

The vector B is decomposed into 3 sub-vectors,
called B; with 7 € {1, ...,3}. By is a 2 components vec-
tor such that the first component is 0 and the second
one Usyppiy (i-e. electromotive power value of the sys-
tem voltage source). By and Bj are null sub-vectors.

According to this decomposition of the symbolic
matrix expression, the Kirchhoff’s law equations are
stated in the last lines of the matrix expression (As s
in A, X3 in X and B;3 in B). In the same way, the
Ohm’s law equations (A2, A22 and Az 3 in A, X,
Xo and X3 in X and B, in B) are stated in the first
lines which describe the voltage source behavior (A ;
in A, Xy in X and By in B).

2) Test symbolic expression: A test symbolic expres-
sion is then derived from the symbolic matrix expres-
sion of the system corresponding to the studied pair
(fault/test). This is performed by solving the sym-
bolic matrix expression for the variables involved in
the measurement corresponding to the test according
to the Cramer’s method (see [5]). The resulting test
symbolic expression is proven to have a specific multi-
variable homographic form.

3) Optimization: The uncertainties of the values
that can be undertaken by the system parameters is
represented by intervals. An algorithm that optimizes
the test symbolic expression is used (see [6]). In order
to find the corresponding interval outcome of a given
test in the occurrence of a given fault, the maximum
and the minimum values of the symbolic expression of
this test have to be found on the parallelotop defined
by the parameters intervals values.

III. TEST SEQUENCING PROBLEM
The test sequencing problem is defined as follows.
e A set F of np faults f; with i € {1,...,np}.

e A set p of ng a priori occurrence probability p; €
[0,1] with ¢ € {1,...,np} such that Y ", p; = 1.

e A set S of ng tests s; with j € {1,...,ng}. The
tests are supposed to be binary, i.e. any test s;
has only two possible outcomes 0 or 1. The tests
are also supposed to be symmetrical, i.e. in the
occurrence of a given fault f;, a test s; has only
one possible outcome.

e A set C' of ng test costs ¢; € RT with j €
{1,...,ng} which denote the cost of test s; mea-

sured in term of time, manpower requirements and
other economic factors.

e A test-matrix, diagnostic dictionary or “cross-
table” A = [a;;] of dimension nr x ng where a;;
represents the outcome of the test s; in the occur-
rence of the fault f; ,in this case 0 or 1.

The problem is then to design a test tree (i.e. diag-
nosis tree) that is able to unambiguously identify the
different faults in F' using the tests in the test set S,
and that minimizes the mean testing cost J given by
equation 3 where d;; = 1 if test s; is used in the test
sequence leading to the identification of fault f; and
di; = 0 otherwise.

ng ns
J:Zpix Zdijxcj (3)
i=1 j=1

It is well-known that the task of finding an optimal
diagnosis tree is an NP-complete problem.

In the application AGENDA, tests can be multi-
valued (i.e. they can have more than two outcomes)
and asymmetrical. Moreover, test costs are not con-
stant but are evaluated dynamically according to the
required modifications of the system configuration.

A. AND/OR search graphs

The problem of building an optimal diagnosis tree
can be formulated as an ordered, best-first search on
an AND/OR graph (see [2]). This graph is composed
of two kinds of nodes: the OR nodes which are asso-
ciated to a set of faults to be discriminated (i.e. am-
biguity set) and the AND nodes which correspond to
the tests to be performed. The root node is an OR
node composed of all the anticipated faults (i.e. com-
plete ignorance). One leaf node is an OR node and
represents one possible fault (no ambiguity). A non
leaf OR node has one and only one AND node child
corresponding to the test to be performed. An AND
node has several OR node children corresponding to
the several possible outcomes of the relative test.

The explicit AND/OR search graph represents all
the possible solutions of a given problem starting from
the ground elements of this problem. For the test se-
quencing problem, the ground elements are the fault
set, the test set and the corresponding cross-table. Ob-
viously, the possible solutions are all the possible diag-
nosis trees that allow one to discriminate the faults of
the fault set using any subset of the test set.

Because of its too big size, the explicit AND/OR
search graph is rarely made explicit. The main idea
of the AO* algorithm is to develop only parts of the
explicit AND/OR search graph which correspond to
the most interesting solutions of the problem, accord-
ing to the objective function to optimize. For the test
sequencing problem, the objective function is the func-
tion J to minimize (see equation 3).



This subgraph G, called the implicit AND/OR
search graph, is selected according to a relevant Heuris-
tic Evaluation Function (HEF), called h.

The HEF is an easily computable heuristic estima-
tion h(x) of the optimal cost-to-go h*(x) from any node
of ambiguity subset x to the leaf nodes. A HEF h is
said to be admissible if and only if h(z) < h*(z) for
any ambiguity set z. It has been shown that an admis-
sible HEF h used with the AO* algorithm leads to an
optimal diagnosis tree [7]. Moreover, the closer h(z) is
to h*(x), the lower is the dimension of the developed
implicit graph G.

At the end of the AO* algorithm, the optimal
subgraph G* is a selected subgraph of the implicit
AND/OR search graph G that has been developed. For
the test sequencing problem, the optimal subgraph G*
corresponds to the optimal diagnosis tree T*. For each
ambiguity subset x corresponding to the OR nodes
that belong to T*, the cost-to-go value F(z) is equal
to the optimal value objective function for this node

J*(z).

B. Admissible HEF's

For the test sequencing problem, two kinds of ad-
missible HEFs have been proposed in the literature.
The first one proposed by Yeung in [8], is based on the
Shannon’s entropy and the second one proposed by
Pattipati in [2] on the Huffman’s code length. The Ye-
ung’s HEF can be used for the specific test sequencing
problem that has to be solved whereas the Pattipati’s
one needs an extension to remain admissible for multi-
valued tests. For this purpose, an extension of the
Pattipati’s heuristic for building D-ary trees (all tests
are supposed to have D possible outcomes instead of 2)
is proposed by Zuzek in [9]. Our contribution improves
the heuristic proposed in [2] and in [9] as it allows the
test to have a different number of outcomes.

Let = be any ambiguity set composed of nf faults
to discriminate f having occurrence probabilities p7,
ie{l,..,n%}.

1) Shannon’s entropy based HEF: The Shannon’s
entropy of z, called H(z), is computed as shown in
equation 4.

g
H(z) = - p¥ xlog, pf (4)
i=1

Let n; be the number of outcomes corresponding to
the test s; having the cost ¢j, j € {1,...,ng}. Let e;
be the efficiency of the test s; defined as the maximum
decrease of entropy per unit cost when the test s; is
performed(see equation 5).

_ log, n;j (5)

e
J .
Cj

In order to minimize the cost of the diagnosis tree,
the most efficient tests have to be performed first. As-
sume, without loss of generality, that the tests in S are
indexed such that e; > ex > ... > ep.

Let p be a mapping from R to R* defined by equa-
tion 6 where 3, € RT with » € N is computed as shown
in equation 7.

p(yr) = Z cj (6)

r r
yr=Y ejxc;=) log,n; (7)
j=1 j=1

For a value y such that y, <y < y,11, p(y) is defined
as the interpolation of p(y,) and p(y,1+1) and, hence,
is computed as shown in equation 8 where 7(y) is the
largest value of r such that equation 9 is satisfied.

7(y) Y= Uny)
ply) =) cj+——% (8)
; T ey

y>Y ejxci=) logn; (9)
j=1 j=1

In [8], it is shown that, for any ambiguity set z,
h*(xz) > p(H(x)) where h*(x) is the optimal cost-to-go
from z. Consequently, p(H) is an admissible HEF.

2) Huffman’s code length based HEF': Let II be the
test sequencing problem that has to be solved. First,
let us suppose that all the available tests are binary.

Let II5 be the test sequencing problem characterized
by a fault set F' and a test set S defined as follows.

e F'is composed of the ny considered faults f; with
i € {1,...,np} having an a priori occurrence prob-
ability p;.

e S is composed of the ng possible symmetrical and
binary tests s; with j € {1,...,ng} that can be
performed on the fault set F' and having an in-
trinsic constant cost c; equal to 1.

The test sequencing problem II, is shown to be
solved in polynomial time by using the Huffman’s al-
gorithm [10].

Since all the possible symmetrical and binary tests
are not necessarily available in the test sequencing
problem II, the relation 10 can be established between
the optimal solutions [*(z) and w3 (z) of the test se-
quencing problems II and II,, respectively.

w; (z) < I (x) (10)

Assuming, without loss of generality, that the test
costs are in ascending order 0 < ¢; < ... < ¢y, a lower
bound h(x) of h*(x) is obtained by equation 11 where
|.] represents the floor function (see [2]). h is hence
an admissible HEF for the test sequencing problem II
with binary tests.

[w3 ()]
> i+ ([ws@) = w5 @))] X ez )

j=1

h(z) =

(11)



Let us now suppose that the available tests are multi-
valued in the considered test sequencing problem II.
The previous HEF is admissible for the test sequencing
problem II with binary tests but not necessarily with
multi-valued tests.

Let IIps be the test sequencing problem character-
ized by a fault set F' and a test set S defined as follows.
Let us assume that the test set S has N, different
available numbers of modalities.

e Fis composed of the ny considered faults f; with
i € {1,...,np} having an a priori occurrence prob-
ability p;.

e S is composed of the IV, subsets of all the possi-
ble symmetrical tests having the same number of
modalities and an intrinsic constant cost c¢; equal
to 1. Consequently S is constituted by the ng tests
sj with j € {1,...,ng} coming from the union of
these subsets.

A polynomial algorithm that derives an optimal di-
agnosis tree Ty, for the problem Il from the optimal
diagnosis tree Ty for the problem II» is proposed (see
[11]).

Since all the possible symmetrical tests having the
same number of outcomes are not necessarily available
in the considered test sequencing problem II, the rela-
tion 12 can be established between the optimal solu-
tions I*(z) and w},(z) of the test sequencing problems
IT and II,;, respectively.

wiy () < 1" (x) (12)

Assuming, without loss of generality, that the test
costs are in ascending order 0 < ¢; < ... < cpy, 2
lower bound h(z) of h*(z) is obtained by equation 13
where |.] represents the floor function. h is then an
admissible HEF for the test sequencing problem IT with
multi-valued tests.

> et ([wis @) — wis (@))% elug, w41

Jj=1

(13)

C. Test set reduction

The AO* algorithm has an exponential complexity
depending on the cardinality ng of the set S of avail-
able tests s; with j € {1,...,ns} and the cardinality
np of the set F of faults f; with ¢ € {1,...,np} to
discriminate.

In the optimal diagnosis tree 7™, let S* be the subset
of the ng+ available tests among the ng ones which are
indeed used to discriminate the ng faults.

Let 7 be the processing time of the AO* algorithm
from the available tests set S and 7* from the available
test subset S*. Since ng- < ng, 7* < T since the cross-
table has only ng« columns on the one hand against
ng on the other hand.

So far, there exist no method to select before the
execution of the AO* algorithm the available tests s;
which constitute the S* subset. However, the AO* al-
gorithm complexity can be decreased by reducing the
set S of available tests to a subset S' of the most rele-
vant (in term of cost and discriminating power on the
F fault set) available tests. However, the diagnosis tree
T' resulting from the execution of the AO* algorithm
on the selected test subset S is optimal for the test
subset S itself by definition, but not necessarily for
the initial set S. But the optimality loss may be mi-
nor compared to the computation gain (see in equation
15).

From a given initial set S of available tests, many
test subset S can be generated. They are character-
ized according to the three following definitions accord-
ing to their discriminating power on the set F' of the
considered faults.

Definition 1 (Discriminating Test Subset)

A test subset S is said to be discriminating for a fault
set F' if it is able to discriminate all the faults of the
fault set F'.

Definition 2 (Minimal Discriminating Test Subset)

A discriminating test subset s’ for the fault set F is
said to be minimal if and only if, for any of its ng tests
s;- with j € {1, ...,nls}, SI—{slj} is not a discriminating
test subset for the fault set F.

Definition 3 (Optimal Discriminating Test Subset)

An optimal discriminating test subset S* for a fault
set F is a discriminating test subset for the fault set
F composed of the tests involved in a given optimal
diagnosis tree T* for the fault set F'.

According to the cost function J, the optimality is
based on both notions of test cost and discriminating
power of the subset of the available tests used in the
diagnosis tree. By working exclusively on discriminat-
ing test subsets, the notion of discriminating power is
always reached. However, it is necessary to be able to
evaluate these discriminating test subsets in order to
select the one which is the most likely to provide the
diagnosis tree that has the lowest cost value .J.

Obviously, the ideal evaluation of a discriminating
test subset S' would be proportional to the cost J(T")
associated to the optimal diagnosis tree T obtained by
executing the AO* algorithm. However, it is impossi-
ble to predict the cost value J(T') from the S test
subset without knowing the diagnosis tree 7" itself.

As shown in equation 14, the heuristic evaluation
function K of a test subset S is defined as the sum of
the costs ¢; corresponding to the tests s; that belong
to this subset S .

(14)
j=1|s]'€S’

Whatever the selected heuristic function K used to
evaluate the cost of the test subsets, finding the low-
est K value discriminating test subset is always a NP-
complete problem. Moreover, the optimal solution of



this problem is not necessarily an optimal discriminat-
ing test subset S*. So, it seems reasonable to use a
polynomial algorithm that provides only a suboptimal
solution for this problem.

A two step discriminating test subset generation
polynomial algorithm is hence proposed. The first step
consists in selecting the tests of the initial test set S
one by one according to the lowest cost value until
a first discriminating test subset, called S}mt, is ob-
tained. The second step generates from the previously
obtained first discriminating test subset S}irst, a min-

imal discriminating test subset, called S;m»n.

IV. PERFORMANCE EVALUATION

The quality criterion @, defined as shown on equa-
tion 15, illustrates the interest of a discriminating test
subset S' as the gain in term of AO* algorithm pro-
cessing time versus the loss in term of optimality (7, ;.
represents the processing time of the AO* algorithm
from the minimal discriminating test subset S, ;).

Q(S’) _ J(TT) y Min(T*l,Tmm)
J(T") T

The performance has been evaluated on real elec-
tronic circuits of the automotive domain. From a given
test subset S, the AO* algorithm with the admissible
Yeung’s HEF returns the same optimal value J(T")
with the same magnitude order of processing time T
as with the admissible Pattipati’s HEF.

For all the evaluated electronic circuits, the best
Q(S") criterion value is always obtained for S

(15)

min OT
S* and the worst one for S. It is also interesting to re-
mark that, for some circuits, the Q(S") criterion value
is almost the same for Sy, ., as for S, ;..

Consequently, since the optimal discriminating test
subset can not be obtained a priori, the selection of a
minimal or even a first discriminating test subset seems
to be an interesting trade-off between the gain in AO*

algorithm processing time and the optimality loss.

V. FUTURE WORKS

Two major issues that are considered for the future
are developed in this section.

The first one deals with the reduction of the test set
in order to compute diagnosis trees quicker and with a
lower complexity. Building an optimal diagnosis tree
for electronic circuits is an NP-complete problem. Its
complexity is linked with the number of tests and the
number of faults. In order to reduce this complexity we
search a method to select a discriminant subset of tests
which can be used to compute the diagnosis tree. This
selection is made according to a criteria taking into ac-
count the dynamic cost and the number of modalities
for a test. It is important to notice that the optimal-
ity is not guaranteed but an upper bound of the cost
should be a priori estimated (see [8]). We are consid-
ering to base our work on [12] whose method could be

applied before the prediction algorithm. The principle
is to consider the behavioral model to find discrimi-
nant test subsets. Then from the different obtained
subsets, by applying the criteria, we hope to have the
subset which will give the tree which has the nearest
cost of the optimal one.

The second issue concerns the diagnosis tree traverse
taking into account the exact values of the already per-
formed tests. During a diagnosis session, exact val-
ues are measured by the garage mechanics and could
be stored. On the other hand, thanks to the predic-
tion algorithm, we have all the formal expressions for
each available test. The main idea is to use this equa-
tion and the exact measured values to compute again
the bounds of the interval or better an exact value for
not yet used tests. So we add more precision in the
numeric values used to fill the cross-table and conse-
quently the tests become more and more pertinent. It
is obvious that computation must be light here and
based on all what we have computed off-line because
all these changes will have to be done on-line.
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